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Deliverable report 

1 Summary 

Deliverable 4.2 of WP4 focused on developing a completely novel algorithmic approach for 
multi-modal and big data integration in the context of deep time series models (DTSM) based 
on recurrent neural networks (RNNs). The developed algorithm is termed Multimodal Teacher 
Forcing (MTF), and is described in detail in (Brenner et al., 2023). Here, we therefore focus on 
describing the basic architecture and training algorithm of the proposed framework, the key 
ideas and insights underlying its development, as well as the extensive benchmarking that was 
performed for model validation. 

 

2 Description of DTSM algorithm. 

2.1 Basic architecture 

Our data driven analysis approach rests on approximating a generative latent dynamics model 
from time series data in order to model the behavior of the latent dynamics underlying the 
observed data. Here we choose a mathematically tractable formulation of a piecewise linear 
RNN (PLRNN) model called the dendritic PLRNN (dendPLRNN, Brenner et al., 2022): 

𝑧𝑧𝑡𝑡 = 𝐴𝐴𝑧𝑧𝑡𝑡−1 + 𝑊𝑊𝑊𝑊(𝑧𝑧𝑡𝑡−1) + ℎ + 𝐶𝐶𝑠𝑠𝑡𝑡 + 𝜖𝜖𝑡𝑡 ,       𝜖𝜖𝑡𝑡 ∼ 𝑁𝑁(0,𝛴𝛴) 

where 𝑧𝑧𝑡𝑡 is the M-dimensional latent state vector at time t, 𝐴𝐴 ϵ RMxM is a diagonal matrix of 
time constants, 𝑊𝑊 ϵ RMxM  is an off-diagonal weights matrix, 𝜙𝜙(𝑧𝑧) =∑ max (𝑧𝑧𝑡𝑡−1 − ℎ𝑏𝑏)𝐵𝐵

𝑏𝑏=1  is a 
nonlinearity composed of an expansion of piecewise linear functions (cf. Brenner et al., 2022), 
and h is a constant threshold vector. Finally, 𝑠𝑠𝑡𝑡  is a (P×1)-dimensional input vector allowing 
for external (experimental) stimuli to directly affect the latent state via a regression coefficient 
matrix 𝐴𝐴 ϵ RMxP, and 𝜖𝜖𝑡𝑡 is a Gaussian noise vector with 0 mean and covariance 𝛴𝛴.  
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Through our novel developments, this model can now be coupled to different probabilistic 
decoder (observation) models, relating latent states of the RNN model 𝑧𝑧𝑡𝑡 to observations 𝑥𝑥𝑡𝑡. 
In the case of Gaussian observations, this can take the simple form of a linear observation 
model: 

𝑥𝑥𝑡𝑡 = 𝐵𝐵𝑧𝑧𝑡𝑡 + 𝛾𝛾𝑡𝑡 ,       𝛾𝛾𝑡𝑡 ∼ 𝑁𝑁(0,Λ) 

where 𝐵𝐵 ϵ RMxN, and 𝛾𝛾𝑡𝑡 is an observation noise vector with covariance Λ ϵ RNxN. 

Alternative, we can also couple the latent process to discrete observations, such as ordinal 
observations (as often assessed via EMA), using e.g. an ordered logit (proportional odds) 
observation model that couples the likelihoods of the occurrence of different discrete ratings 
to the underlying continuous process: 

𝑎𝑎𝑡𝑡 ∼ Ordinal (𝛽𝛽𝑧𝑧𝑡𝑡,, 𝜖𝜖). 

Note that this formulation is very general and allows the coupling of many different observa-
tion models for different continuous or discrete observations, such as Poisson or zero-inflated 
Poisson models for count data or categorical decoders for categorical data, and thus allows for 
reconstruction from discrete data, such as behavioral data, alone. 
 
The framework also allows to integrate over modalities, that is, to integrate various observa-
tion models simultaneously by connecting different types of observations within a common 
latent dynamics space, enabling integration of various sources of information for optimal re-
construction. 
 
The developed approach hence allows the joint extraction of complex dynamics from multiple 
modalities simultaneously, such as continuous GPS data with discrete ordinal Likert scale rat-
ings and discrete step counts. It is one of the first models ever to perform multimodal data 
integration for dynamical systems reconstruction (DSR), and reaches state of the art perfor-
mance, as shown in section 3. 
 

2.2 Training framework.  

Teacher forcing.  

The  developed approach is grounded on recent advances in training RNN-based time series 
models leveraging a technique called teacher forcing (TF) for effectively controlling gradient 
divergence during training while capturing important long-term dependencies present in time 
series data. Techniques like shallow TF (Mikhaeil et al., 2022) or Generalized TF (Hess et al., 
2023) enable DSR even from challenging real-world data on which many previous methods 
failed. Hence, the key idea for making DSR from multiple, statistically distinct data sources 
work is the generation of a multimodal TF signal for efficient training of a reconstruction 
model.  

Approaches based on TF leverage a combination of data-inferred states and forward-iterated 
latent states to balance the training process. This involves strategically replacing certain latent 



4 

states with data-inferred states during training. These data-inferred states are derived by in-
verting the decoder model. This inversion is straightforward in the context of continuous data, 
e.g. when using a simple linear Gaussian observation model. 

Inverting the decoder model is, however, not always possible, particularly not for discrete ran-
dom variables. Moreover, in the case of multiple simultaneously observed data modalities, it 
is unclear how to combine the different data modalities to obtain an optimal estimate for the 
TF signal. To address the challenges posed by different data modalities and the infeasibility of 
inverting the decoder model in certain scenarios, we employ a Multimodal Variational Auto-
encoder (MVAE). This MVAE creates a joint latent representation from various data types, 
providing a versatile TF signal for training. The MVAE is linked to the observations through 
shared decoder models with the DSR model.  

To further enforce consistency between the MVAE and DSR model latent codes, we assume 
that the MVAE prior is given through the DSR model. Training the MVAE thus involves mini-
mizing the negative Evidence Lower Bound (ELBO), using the reparameterization trick for la-
tent random variables. We experimented with different encoder models for the MVAE, such 
as those based on RNNs and Transformers, finding that a Convolutional Neural Network (CNN) 
yielded the best results.  

Our total training loss combines the negative ELBO of the MVAE with the reconstruction loss 
of the DSR model and the consistency loss between encoder states and latent states of the 
DSR model. This integration ensures that our training process is both robust and effective, 
guiding the DSR model towards accurate dynamic system reconstruction. Fig. 1 illustrates the 
general MTF framework.  

 

 

 

Fig. 1. General MTF framework. Multimodal time series observations are mapped to an approximate posterior 
distribution, using an encoder network. Samples from this distribution are used as an effective control signal to 
enable training of a DSR model for extracting a joint latent dynamics model of the multimodal observations. Both 
latent codes (that of the DSR model and that of the encoder network) are coupled to shared decoder models to 
compute likelihoods over the reconstructed observations. The framework can be used with any type of dynamics 
model (e.g., other types of RNNs), as well as with any set of encoder or decoder models (e.g., other types of 
observation modalities). Based on Brenner et al. (2023). 
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Parameter hierarchization framework.  

Optionally, the MTF algorithm can be trained via a parameter hierarchization approach (Fig. 
2). In this context, parameter hierachization entails varying levels of parameter inference, 
wherein the upper hierarchy parameters are inferred from time series data derived from 
multiple individuals, while the lower hierarchy is inferred from data of an individual.  This 
allows the inference procedure to integrate over data from different participants, performing 
‘big data’ integration.  To achieve this, model parameters are partitioned into a low-
dimensional trainable weight vector and projection matrices responsible for projecting this 
vector onto parameters of the RNN model. The projection matrices are jointly trained and 
shared across multiple individuals. The low-dimensional weight vectors are fine-tuned for each 
individual, thereby reducing the inter-individual differences to a low-dimensional, potentially 
interpretable parameter manifold.  

 

 

Fig. 2. Illustration of the hierarchization framework, combining low-dimensional subject specific parameter vec-
tors with projections learned on the group level, mapping to the parameters of subject specific DSR models, such 
as the dendPLRNN, capturing individual differences while leveraging shared group level structure. 
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3 Model validation 

We validated our implementation of the MTF framework on a series of benchmarks by testing 
its DSR performance, and comparing it to other DSR models. A range of tools and performance 
metrics were developed to assess DSR in the process.  

We tested different scenarios relevant in the context of IMMERSE, showcasing different 
strengths of the MTF framework: multimodal data integration across continuous, ordinal and 
count observations (such as GPS data, Likert scale ratings and step counts), multimodal 
integration in a setting where continuous observations are highly distorted by noise but ordinal 
observations are available, and DSR exclusively from ordinal or categorical data. 

3.1 DSR from multimodal benchmarks 

To benchmark the approach in settings reflecting the experimental multimodal data collected 
in the IMMERSE consortium, we simulated time series from two nonlinear dynamical 
benchmark systems, the Lorenz attractor and a 6-dimensional chaotic network model, and 
filtered the simulated time series through Gaussian, ordinal, and count process decoder 
models.  

We then compared the DSR performance of the MTF algorithm on these benchmarks to 
several alternative approaches. Firstly, we compared it with a sequential multimodal 
Variational Autoencoder (VAE), the only other general approach for DS reconstruction from 
multimodal data in the literature (Kramer et al., 2022). Secondly, we used classical RNN 
training with modality-specific decoder models, where observations are provided as inputs at 
every time step. Another strategy tested was the 'multiple shooting' approach, adapted by us 
to handle multimodal data. 

Additionally, we explored approaches where multimodal data were transformed to approxi-
mate Gaussian distributions using Box-Cox transformations and Gaussian kernel smoothing. 
These transformed datasets were then used to train the RNN either via standard Backpropa-
gation Through Time with Teacher Forcing (BPTT-TF) or a VAE-based Teacher Forcing (VAE-TF) 
without modality-specific decoder models, termed GVAE-TF. In all these comparisons, the 
same RNN architecture (dendPLRNN) was employed. 

Our evaluations focused on capturing the geometrical structure in state space and the asymp-
totic temporal structure of the underlying DS (Fig. 3). We used measures like Kullback-Leibler 
divergence for state space structure and Hellinger distance or auto-covariance functions for 
temporal structure. We also computed mean-squared errors (MSE) for short-term ahead pre-
diction. However, in chaotic systems, these prediction errors are not indicative of the system's 
longer-term behavior due to the exponential divergence of nearby trajectories. Here the MTF 
framework outperformed all other approaches by sometimes large margins, showing that it 
successfully learns a joint model over all three data modalities. 
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Fig. 3. a) Example reconstructions jointly reconstructed from continuous, ordinal and count data from the chaotic 
Lorenz-63 benchmark systems. b) Temporal agreement, based on the power spectrum (top) for continuous data 
and the Spearman autocorrelation function (bottom) for discrete observations. Taken from Brenner et al., 2023. 

3.2 DSR for noise distorted continuous data and ordinal data 

To mimic another clinically relevant situation, we then tested the algorithm in a setting where 
the underlying continuous data was highly distorted by noise (with 50% of the data variance), 
e.g. induced by noisy measurement devices or artifacts, but jointly measured ordinal data 
sampled from the same ground truth system was available. We compared DSR on this data 
with and without including additional data. We found that in this setting, including ordinal data 
allowed successful reconstructions of the chaotic Lorenz system, even when in the unimodal 
setting no such reconstructions were possible anymore (cumulative histograms over state 
space divergence and power spectrum agreement in Fig. 4 b,c). 

 

 

Fig. 4. DSR for a setting where continuous observations are heavily distorted by observation noise (here with 
50% of the data variance), and simultaneously provided ordinal observations. Normalized cumulative histograms 
of geometrical attractor disagreement and power spectrum Hellinger distance show that reconstructions are still 
possible with ordinal observations on board, while largely failing when using solely the distorted continuous ob-
servations. Taken from Brenner et al., 2023. 
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3.3 DSR from discrete data 

Motivated by these results, we explored the feasibility of DSR using solely ordinal data, a sce-
nario relevant in psychiatric settings where often only ordinal or behavioral data are recorded. 
This approach represents a significant challenge compared to multimodal settings with Gauss-
ian data, as ordinal data substantially coarse-grains the underlying continuous dynamical pro-
cess, omitting intricate geometric and topological information. 

To address this, we first tackled DS reconstruction using only ordinal data, randomly sampling 
8 ordinal variables with 7 levels each, a scaling often employed in studies based on ecological 
momentary assessment (EMA) (see Fig. 5 top row). 

Furthermore, we attempted DSR based on purely symbolic representations of the dynamics. 
This involved using symbols corresponding to sub-regions of a grid superimposed on the at-
tractor (Fig. 5 bottom row). Our findings demonstrate that successful DSR is in principle pos-
sible from just a symbolic (categorical) coding of the underlying chaotic attractor. This is, to 
our knowledge, the first instance such a result has ever been shown. 

These results have implications for experimental psychiatry, where data is often limited to 
discrete or ordinal forms, such as patient responses or observed behaviors, which do not cap-
ture the full complexity of the underlying processes. Our approach shows that even with this 
limited data, it is possible to reconstruct complex underlying dynamical systems. 

 

 

Fig. 5. DSR solely from discrete observations, using MTF. Top: Reconstruction of the chaotic Rössler attractor 
from only ordinal time series. Bottom: DSR from symbolic coding of Lorenz attractor. 

3.4 Benchmark validation of hierarchization framework. 

The hierarchisation framework was tested on very short time-series (with lengths common in 
the context of EMA time series), derived from the chaotic Lorenz system, where we tuned one 
of its parameters (commonly referred to as 𝜌𝜌) to induce a bifurcation between the cycle and 
chaotic regime of the Lorenz attractor, where different values of 𝜌𝜌  are taken to represent 
different subjects. 



9 

D [4.2]   

Initial tests lead to positive results, where the subject specific models successfully captured 
individual differences, while at the same time leveraging group-level information for inferring 
dynamics from otherwise permissibly short time series. 

Most notably, the low-dimensional parameter manifold could be related via linear regression 
to the 𝜌𝜌  parameter of the ground truth system, allowing extrapolation of models to new 
dynamical regimes, and revealing clearly interpretable differences between subjects. 

In experimental applications, the subject-specific low-dimensional parameter vector aims to 
capture all relevant subject-specific differences, and can be further related to psychological 
constructs and survey data after training. This could significantly aid in connecting individual 
differences between models to subject-specific differences and behavioral contingencies, 
which are otherwise much harder to discern from models solely trained on individual subjects. 

 

Code base 

A detailed codebase for training and testing the MTF-approach was implemented in Python. 
The MTF framework is implemented in Pytorch within a repository containing detailed 
documentation on training new models and examples for analyzing trained models. This 
repository is currently available to the IMMERSE consortium upon request. 
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