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WP 4.2 - Al Algorithms
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Neural spike data, position data and

(4
cognitive labels I M M E RSE

Goal: Learn a joint dynamics model of movement, neural spike trains in rat
hippocampus and activity from prefrontal cortex, using MVAE-TF
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Reconstructions I M M E RSE

- Reconstructed spike activity closely resembles that of GT system

- Observation model can be tailored to match the assumptions of the

observed data
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Latent model jointly encodes positional information, cognitive state
and spike activity o Drowsy
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Reconstructions benefit from Multimodal — —
Data Integration I M M C RS:
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Modelling Social Interaction Data (TRR

oroject IMMERSE
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Cue-Driven Dynamics, similar to EMls I M M — —
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Infer RNN RNN forecast
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very small amount of data per subject, similar to EMA data
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Investment Dynamics RNN Activity
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Model interaction with different agents (contrarian, supportive, trust-building)
- Unsupervised discovery of different interaction styles
- Ildentification of interpretable behavioral traits and contingencies in personalized

DTSM models
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Pre-training and hierarchisation framework IMMERSE
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WP 4.3 Big data integration framework
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New hierarchisation Framework based on Singular Value — —
Decomposition of RNN model parameters: only train SVs IM M ERSE
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small amount of data per ,subject”,
shared dynamics but subject specific parameter differences

simulated 3D plot (subject 1) simulated 3D plot (subject 2) simulated 3D plot (subject 3) simulated 3D plot (subject 4)
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Milestone / | Title Original deadline
deliverable

D4.1 Set of basic statistics for direct implementation and Month 9
visualization

MS14 Identification of interpretable behavioral traits and Month 24 Ongoing
contingencies in personalized DTSM models

D4.2 Algorithms and software environment for DTSM-based Month 36 Ongoing (V)
multimodal big data integration

MS18 Development of multi-site big data approach for ESM and Month 30 Ongoing
DTSM models

MS24 Cross-site validation of big data approach Month 40 Not yet started

D4.3 Software for identification, visualization, and feedback of Month 48 Not yet started

behavioral contingencies
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* First application of hierarchical framework to experimental
data

* Extraction of interpretable features and relationships to
psychological survey data

 Code documentation
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Collaboration / input other WPs

- Are read-out/preprocessing scripts for MoMent&movisense XS data from
other projects useful (WP3 or downstream tasks)?

- What can we do on the data that is currently available?

- Since | don‘t have funding after March and switch to a new position we will
have more limited capacity, but remain involved




