

WP4: Data Analysis and AI Algorithms

Daniel Durstewitz, Georgia Koppe, Peter Kuppens, Manuel Brenner Central Institute for Mental Health Mannheim

Steering Commitee Meeting Edinburgh, 17/11/23

WP4 - Staff

Peter Kuppens

Daniel Durstewitz

Georgia Koppe

Manuel Brenner

Multimodal Variational AutoEncoder+ Teacher Forcing (MVAE-TF), AAAI23 Workshop

IMMERSE

Reconstructed Dynamics from ordinal discretization

Neural spike data, position data and cognitive labels

Goal: Learn a joint dynamics model of movement, neural spike trains in rat hippocampus and activity from prefrontal cortex, using MVAE-TF

Reconstructions

Generated

- Reconstructed spike activity closely resembles that of GT system
- Observation model can be tailored to match the assumptions of the observed data

$$\begin{array}{c} \begin{array}{c} \text{Negative} \\ \text{Binomial Model} \end{array} \\ p_{\theta} \left(c_{tt} \mid z_{t} \right) = \frac{\Gamma(c_{tt} + \phi_{l})}{\Gamma(\phi_{l})c_{tt}!} \left(\frac{\phi_{l}}{\mu_{tt} + \phi_{l}} \right)^{\phi_{l}} \left(\frac{\mu_{lt}}{\mu_{tt} + \phi_{l}} \right)^{c_{tt}} \end{array} \qquad \begin{array}{c} \begin{array}{c} 60 \\ 50 \\ 40 \\ 0 \\ 20 \\ 10 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 50 \\ 10 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 50 \\ 10 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 50 \\ 10 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 50 \\ 10 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 50 \\ 10 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 50 \\ 10 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 50 \\ 10 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 50 \\ 10 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 50 \\ 10 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 50 \\ 10 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \qquad \begin{array}{c} 0 \\ 0 \end{array} \end{array} \qquad \begin{array}{c} 0 \\ 0 \end{array} \end{array} \qquad \begin{array}{c} 0 \\ \end{array} \end{array} \qquad \begin{array}{c} 0 \end{array} \end{array} \qquad \begin{array}{c} 0 \\ 0 \end{array} \end{array}$$
 \qquad \begin{array}{c} 0 \\ 0 \end{array} \end{array}

Positional Coding

Latent model jointly encodes positional information, cognitive state and spike activity

Reconstructions benefit from Multimodal Data Integration

Modelling Social Interaction Data (TRR project)

Modelling Social Interaction Data

Cue-Driven Dynamics, similar to EMIs

very small amount of data per subject, similar to EMA data

Test Set Predictions

WP 4.2 – AI Algorithms 0.8 0.6 Entropy PC2 0.2 0.0 -3 -2 Ó PC1 Ŕ -1Ż 5.0 4.5 4.0 3.5 stmer Stmer PC2 ی 2.5 2.0

1.5

Ż

3

0 PC1

Uncertainty over which investment to make

Invested amount

This project has received funding from the European Union's Horizon 2020 research and innovation Programme under grant agreement 945263 (IMMERSE)

-3

-2

IMMERSE

Model interaction with different agents (contrarian, supportive, trust-building) → Unsupervised discovery of different interaction styles →Identification of interpretable behavioral traits and contingencies in personalized DTSM models

WP 4.3 Big data integration framework

Pre-training and hierarchisation framework

Unai Fischer Abaigar, MSc

IMMERSE

WP 4.3 Big data integration framework

New hierarchisation Framework based on Singular Value Decomposition of RNN model parameters: only train SVs

Interpretable substructure

WP 4.3 Big data integration framework

small amount of data per "subject", shared dynamics but subject specific parameter differences

Elias Weber, MSc

WP4 – Deliverables & Milestones

Milestone / deliverable	Title	Original deadline	Status
D4.1	Set of basic statistics for direct implementation and visualization	Month 9	\checkmark
MS14	Identification of interpretable behavioral traits and contingencies in personalized DTSM models	Month 24	Ongoing
D4.2	Algorithms and software environment for DTSM-based multimodal big data integration	Month 36	Ongoing (☆)
MS18	Development of multi-site big data approach for ESM and DTSM models	Month 30	Ongoing
MS24	Cross-site validation of big data approach	Month 40	Not yet started
D4.3	Software for identification, visualization, and feedback of behavioral contingencies	Month 48	Not yet started

WP4 – Year 2023 Goals

- First application of hierarchical framework to experimental data
- Extraction of interpretable features and relationships to psychological survey data
- Code documentation

WP4 - Objectives

Collaboration / input other WPs

- Are read-out/preprocessing scripts for MoMent&movisense XS data from other projects useful (WP3 or downstream tasks)?
- What can we do on the data that is currently available?
- Since I don't have funding after March and switch to a new position we will have more limited capacity, but remain involved

