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WP4 - Overview, objectives, and aims

IMMERSE

4.1 Basic data characteristics, robust statistics, and visualization

 Implementation of robust low level statistics for DMMH

* 4.2 Machine learning for multimodal data integration
* ldentify predictive behavioral contingencies for mental health
* ldentify optimal leveraging points for improving mental health
* 4.3 Development of efficient cross-site big data integration framework
for multi-modal time series

e Establish a cross-site validated analysis tool which harvests the potential of big
(time series) data to forecast individual health trajectories




Task 4.2. Machine learning for multimodal data integration

Reconstructing dynamical systems via RNNs IMMEeRSE
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Task 4.2. Machine learning for multimodal data integration
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Task 4.2. Machine learning for multimodal data integration
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Task 4.2. Machine learning for multimodal data integration
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Examples in neuroscientific data
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/Lorenz-63 (atmospheric convection)\ ﬁBiOPhysical bursting neuron model \
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Task 4.2. Machine learning for multimodal data integration

1. Multimodal time series data

Latent DS (PLRNN) Modality-specific Experimental
observation models observations
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2. Exploding gradients problem
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Task 4.2. Machine learning for multimodal data integration
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MVAE-TF performance results R I M M E RSE
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Task 4.2. Machine learning for multimodal data integration

Multimodal MVAE-TF works on highly noisy data and outperforms unimodal approaches
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Suggestions for RNN based data analysis
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I. Short term forecasting

Can we successfully forecast participant
ratings several hours ahead based on
data in intense sampling periods (first 2
months)?
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Suggestions for RNN based data analysis
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I. Short term forecasting Il. Long term forecasting / temporal pattern
detection

Can we successfully forecast participant Can we predict long-term statistics/ robust

ratings several hours ahead based on temporal patterns on the time series (i.e.

data in intense sampling periods (first 2 evolution over next 10 months) based on

months)? intense periods?

(e.g. #of days per month...)
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Suggestions for RNN based data analysis
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lll. Integration of passive sensor data and active (EMA) scores

Does passive data improve prediction of active data and can we use associated prediction
rules/ dynamical systems properties to draw conclusions on active data based on passive
data alone?

(identify “early warning signals” based on sensor data)
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Suggestions for RNN based data analysis
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IV. DMMH effects V. Comparison of sampling periods T1, T2, T3
Can we model engagement in the Are all sampling periods best described by
dashboard as input to the algorithm and the same (subject-level) model or do we
predict the effect of this engagement on need to account for changes in dynamics?

mental health?
Describe constants/changes in dynamics
by hierarchical approach?




Data assessment
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1. Aufklarung '
- Messung
Einwilligung .

= 6 Tage

KN Yull S

i
xS

Q 6 Tage

Nutzung der App fir mind. 4 x 1 Woche
uber einen Zeitraum von 2 Monaten

2 Monate nach Baseline

xS

6 Tage

5. T2- Messung 6. T3- Messung

u 6 Tage Q 6Tage[b

6 Monate nach Baseline 12 Monate nach Baseline

Sensor data



